
Bits: a Permanent Virtual Installation
Gabriel Zalles Ballivian

Department of Music
UC San Diego

San Diego, CA
gzalles@ucsd.edu

Abstract—Bits is a permanent virtual installation that features
a multi-tile display, spatial audio, poetry, video, and geometric
primitives. The installation was built using the WebXR platform
A-Frame and was inspired by the classic computer music work
Poème électronique by Edgard Varèse, written in 1958 for the
Brussels World Fair. In this work, we explore the concept
of digital greed or virtual hoarding, which we define as the
propensity for people to accumulate or amass data without
regard for the human, ecological, or psychological impact of this
practice. This work is also part of a larger exploration of open-
source spatial audio tools, which can be leveraged to improve
access to elite technologies.

Index Terms—spatial audio, art, media, VBAP, music

I. INTRODUCTION

The emergence of many new media art genres calls
into question qualitative issues in regards to perfor-
mance in virtual and electronic spaces. What consti-
tutes performance in technological art, and how can
we form a critique of new media performance by
analyzing these aesthetic spaces? [1]

Bits is a permanent virtual installation created in A-Frame
that explores the concept of data hoarding or digital greed. At
various points during our academic studies in music depart-
ments throughout the US, we had the inclination to create a
musical work that featured scale as one of its major defining
parameters. Given our background, and financial limitations, it
was clear that physical scale would be difficult to accomplish,
so instead digital scale was pursued. This meant using a large
collection of data types and as many techniques as possible in
a single experience.

In order to achieve this work, a small but considerable
number of high-quality images were scraped from the internet
and sequenced rapidly to create a stochastic video file by
using command line tools, MAX/MSP, and Quicktime. The
video was also at various points transcoded using Handbrake
to reduce the memory demands of the project. The original
work had multiple instruments, but ultimately we decided
to feature only a single sound-making algorithm - a rapid
sampling system that drew from a collection of 10,000 audio
files in the FSDKaggle Dataset [2]. The algorithm randomly
selects a sample from the set, applies a random pitch-shifting
value, and also randomly spatializes the signal using the VBAP
external in Puredata [3].

Fig. 1. Varèse

II. POÈME ÉLECTRONIQUE

Edgard Varèse composed Poème électronique in 1958 for
the Brussels World Fair [4]. It is one of the seminal works of
computer music, due to its gargantuan scope, made even more
impressive due to the time period in which it was created. The
composition featured one of the largest speaker arrays ever
assembled, in addition to video, lights, and other theatrical
elements. The piece is eight hours long in total and was divided
into one-hour segments.

This composition is one which I have known about for
many years. Much like in the original composition, this project
seeks to utilize scale as a key parameter of the musical
composition. The number of speakers relative to the original
work is substantially smaller this is in part because we want



to keep the bandwidth requirements of the project relatively
low. This is one of the key differences between working in
the physical and digital world - if the bandwidth requirements
are exorbitant, few people will be able to access the oeuvre.

There are a total of eight virtual displays which project the
video on a loop but each display begins playback at a different
starting point. The goal was to create enough randomness in
the number of images and sounds that one feels as though
the entire experience is entirely aleatory. At this time the
amount of text in the scene is restricted to a very small amount
and no additional geometries other than primitives have been
imported. Besides using vast amounts of data, we want to
eventually create an environment that features many different
types of media such GLTFs [5] and animations - the problem
is conveying this data elegantly.

III. VBAP

VBAP [6] is a panning algorithm that relies on linear
algebra principles to calculate the distance from a point inside
a triangle to the three vertices that comprise it. This distance
result is then used to calculate the corresponding gains for
those speakers. In this project, we make use of the VBAP
external which can be found via Deken in Puredata. We created
an abstraction that randomly selects a sample from a bank
of 10,000 possible choices and plays back the audio in a
virtual octophonic configuration, which is then recorded. The
sampling of these sound files is done in rapid succession to
coincide with the stochastic and abrupt nature of the video file.
The files also go through random pitch shifting before being
reproduced. In the future, we would like to add an even greater
number of effects to create even less predictable material and
increase the number of possible combinations or permutations.

In 2D VBAP the strength of each speaker is controlled by
a gain factor gi. The basis is composed of unit-length vectors
directed toward the virtual source [7]:

p =
[
p1 p2

]T
= g1l1 + g2l2

(1)

Where T denotes the transposition operator, g are the gain
factors and l are the unit vectors.

In matrix form:

pT = gL12

Using the right inverse of the matrix L, we can solve for g,

g = pTL−1
12

Three-dimensional VBAP has a similar solution but requires
three loudspeakers to produce a virtual source.

The gain factors are computed using the same technique,

g = pTL−1
123

Figure 2 shows one of the voices of our [clone] object
which randomly selects a sample from our set, applies the
pitch shifting, generates a random position for the source, and
spatializes the material. The result, due to the quick nature

Fig. 2. The heart of our Pd patch.

of the sequencing, feels similar to a granular synthesizer in
which the grains originate from a corpus of sources, rather
than from a single file. In order to create our virtual auditory
display, the VBAP channel feeds are recorded and attached to
virtual elements in the A-Frame [8] environment.

IV. WEB AUDIO API BINAURAL FILTERS

The Web Audio API (WAA) contains certain functions
for spatializing sound and is reasonably comprehensive. The
WAA [9], in contrast to external JS libraries, describes the
capabilities of any browser using this framework1. In contrast
to ambisonic libraries, the WAA does not need to be imported
into one’s project, as it is internally contained with various
browser distributions.

There are three main functions for spatialization within the
WAA:

1) Panner Node: which allows for equal-power (e.g. tra-
ditional stereo panning), or HRTF panning2,

2) Distance Effects: which calculates gain values based
on the position of listener(s) and source(s); sounds are
amplified as a listener approaches a source as in real
life,

3) Sound Cones: determine the directivity of the sound
source (e.g. omnidirectional, cardioid, etc.).

Unfortunately, the workflow for creating spatial music using
the WAA is slightly more complicated than other tools, since
it requires one to program every sound source in JS/HTML,
rather than simply importing a sound field created using a more
conventional tool - such as a DAW. A-Frame and THREE.js3,
provide WAA-based positional audio which allows us to map
geometries to sound sources. This makes the WAA a very
powerful option, especially in circumstances where the number
of sound sources is small. It has also been noted by researchers
that audio localization is a multi-sensory task, seeing an object

1The WAA defines how these methods must be implemented to conform
to the standard, it is not a library per se.

2Using interpolation methods rather than ambisonics.
3Related via the fact the A-Frame is built on THREE.js



and hearing an associated sound can help us discriminate
source positions.

Fig. 3. The WAA graph showing the hierarchy between AudioContext and
children.

A. Inside the WAA

Carpentier [10] provides a good summary of the capabilities
and limitations of the WAA. According to the author, both
Mozilla’s Firefox and Google’s Chrome browsers are based
on the Blink engine [11], which has the following deficits:

1) Filter kernels are not partitioned, which causes extra
latency of half the FFT (e.g. Fast Fourier Transform)
size,

2) The IRCAM Listen HRTF data set [12], is hard-coded
into the panner method, and,

3) The documentation does not explain how the HRTF set
was selected, or why the Impulse Responses (IRs) were
truncated to half their size - both of which likely affect
the psycho-acoustic character of the system.

Despite its limitations, we believe the WAA is one of the
most accessible and complete tools to disseminate spatial
audio using FOSS. In contrast to game engines, one does not
need to purchase any additional software to start programming
for the web, and there are countless sources for free assets
online. We believe web applications using spatial audio will
proliferate in the next decade, as many systems start to become
cloud-integrated and browser-based.

V. DIGITAL INSTALLATION

The concept of a virtual installation is not something that is
largely discussed or understood. It is a common experience in
museums and galleries for artists to create installations, either
interactive or passive, that patrons can experience. When we
shift to the digital domain certain limitations of this medium
are no longer present. Usually, an exhibit might be featured
in a museum for several months and it takes up one room in
the building. In the case of digital installations, however, the
physical and temporal restrictions are naught.

We can create a virtual environment that can be visited at
any time, be arbitrarily large, and theoretically exist forever.
The reason why I labeled this work a virtual installation as
opposed to an XR experience is because in my mind it has

no beginning or end. There is a finite amount of audio and
video material, but the hope is that it’s stochastic enough that
one can stay indefinitely if desired. The starting point, ideally,
does not change the experience of the user, who can choose
to leave at any time - like in the real world.

I believe this is an interesting and meaningful distinction we
will see more artists incorporate into their works in the coming
decades. The idea is that now we can create experiences
where the user can be suspended in time, a bit like an open-
world video game, except that in these worlds there really
no objectives, points, or winners. The benefit of this genre is
also that it enables access to elite spaces, such as galleries, by
treating the internet as the world’s largest museum.

VI. DEI STATEMENT

In recent years my work process has shifted to include more
FOSS as a philosophical impediment of the oeuvres. The idea
is that everything from process, product, and purpose, can be
replicated by as many people as possible of limited means.
Rather than relying on multi-million dollar spaces which are
restrictive and protected, we can manufacture similar worlds
which feature these components, in a synthesized form. The
multi-channel/multi-display experience of Bits would like cost
thousands of dollars to realize in the physical world. This
project is part of my larger initiative to shift my process to
focus on accessible software and hardware. I am originally
from Bolivia and part of the motivation for this is being able
to teach courses in my hometown that are economically viable
for the people in them. That means that individuals who don’t
own HMDs or powerful desktop computers can participate
using existing infrastructure.

VII. FUTURE WORK

This project, as it currently stands, is just a fraction of what
we believe this piece could be. The most appealing direction
for us is one where we can integrate a JS library to request
samples and images from an online repository in real time.
Let this repository be public, and its size of it be very large.
The level of indeterminacy, and by proxy, the number of
permutations is also quite low in its current state since both the
audio and the video are pre-described. It might be possible to
compile our Pd code using WebPd which would translate the
patches into Javascript. This would then allow us to perform
many of the random operations in real time but be able to
maintain the virtual scene.

VIII. CONCLUSION

This position paper has described a multimedia installation
living on the internet on a permanent basis. The piece entitled
Bits features a synthesis algorithm that randomly samples
data from a modestly large corpus, both in audio and image
form. The composition seeks to address the concept of digital
greed: a human disposition to accumulate and consume data,
without regard for the physical consequences. Data is the new
oil, and we are all producers. Paradoxically, this composition

https://github.com/sebpiq/WebPd


underscores this issue by using a sizeable database4. The scene
also features spatial audio and multi-tile display, in an attempt
to subvert the expectation that production value equates with
the strength of the message.

REFERENCES

[1] P. Lichty, “The cybernetics of performance and new media art,”
Leonardo, vol. 33, no. 5, pp. 351–354, 2000.

[2] 2023. [Online]. Available: https://www.kaggle.com/competitions/
freesound-audio-tagging/data

[3] M. S. Puckette et al., “Pure data,” in ICMC, 1997.
[4] E. Varèse and C. Wen-Chung, “The liberation of sound,” Perspectives

of new music, vol. 5, no. 1, pp. 11–19, 1966.
[5] F. Robinet et al., “gltf: Designing an open-standard runtime asset format

fabrice robinet, re mi arnaud, tony parisi, and patrick cozzi,” in GPU
Pro 360 guide to 3D engine design. AK Peters/CRC Press, 2018, pp.
243–260.

[6] V. Pulkki and T. Lokki, “Creating auditory displays with multiple loud-
speakers using vbap: A case study with diva project,” in International
Conference on Auditory Display, 1998, pp. 1–5.

[7] 2020. [Online]. Available: https://vocal.com/
speech-processing-and-audio/vector-base-amplitude-panning/

[8] 2023. [Online]. Available: https://aframe.io/
[9] “Web audio api,” https://webaudio.github.io/web-audio-api/index.html,

(Accessed on 04/26/2021).
[10] T. Carpentier, “Binaural synthesis with the web audio api,” in 1st Web

Audio Conference (WAC), 2015.
[11] “Blink (rendering engine) - the chromium projects,” https://www.

chromium.org/blink, (Accessed on 04/26/2021).
[12] “Listen hrtf database,” http://recherche.ircam.fr/equipes/salles/listen/,

(Accessed on 04/26/2021).

4Compared to large companies, however, this is minuscule.

https://www.kaggle.com/competitions/freesound-audio-tagging/data
https://www.kaggle.com/competitions/freesound-audio-tagging/data
https://vocal.com/speech-processing-and-audio/vector-base-amplitude-panning/
https://vocal.com/speech-processing-and-audio/vector-base-amplitude-panning/
https://aframe.io/
https://webaudio.github.io/web-audio-api/index.html
https://www.chromium.org/blink
https://www.chromium.org/blink
http://recherche.ircam.fr/equipes/salles/listen/

	Introduction
	Poème électronique
	VBAP
	Web Audio API Binaural Filters
	Inside the WAA

	Digital Installation
	DEI Statement
	Future Work
	Conclusion
	References

